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ABSTRACT

Purpose Accurate monitoring of the sub-visible particle load in
protein biopharmaceuticals is increasingly important to drug
development. Manufacturers are expected to characterize and
control sub-visible protein particles in their products due to their
potential immunogenicity. Light obscuration, the most commonly
used analytical tool to count microscopic particles, does not allow
discrimination between potentially harmful protein aggregates and
harmless pharmaceutical components, e.g. silicone oil, commonly
present in drug products. Microscopic image analysis in flow-
microscopy techniques allows not only counting, but also
classification of sub-visible particles based on morphology. We
present a novel approach to define software filters for analysis of
particle morphology in flow-microscopic images enhancing the
capabilities of flow-microscopy.

Methods Image morphology analysis was applied to analyze
flow-microscopy data from experimental test sets of protein
aggregates and silicone oil suspensions.

Results A combination of four image morphology parameters
was found to provide a reliable basis for automatic distinction
between silicone oil droplets and protein aggregates in protein
biopharmaceuticals resulting in low misclassification errors.
Conclusions A novel, custom-made software fitter for discrimi-
nation between proteinaceous particles and silicone oil droplets in
flow-microscopy imaging analysis was successfully developed.

Electronic supplementary material The online version of this article
(doi: 10.1007/s11095-011-0590-7) contains supplementary material,
which is available to authorized users.

KEY WORDS biopharmaceuticals - microflow imaging -
pre-filled syringes - protein aggregation - silicone oil - subvisible
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ABBREVIATIONS

AR aspect ratio

MFI microflow imaging

NA  numerical aperture
PBS Phosphate buffer saline
TFA  trifluoroacetic acid

INTRODUCTION

Sub-visible particles, inherently present in all protein drugs,
have recently become the focus of attention for the health
authorities (1) owing to the widely spread notion that
microscopic protein aggregates may be harmful when
injected into humans due to their potential immunogenicity
(2,3). In consequence, sub-visible particles are considered
an important safety-related quality attribute of biopharma-
ceuticals and manufacturers are expected to monitor the
formation of sub-visible particles in their products during
manufacturing and long-term storage. Until recently,
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analytical techniques based on light obscuration were the
only widely applied technology to measure sub-visible
particles in pharmaceutical products. This methodology is
based on the ability of a particle to reduce the measured
light intensity when passing a light beam. Whereas standard
light obscuration instruments are able to count particles
larger than 1-2 um, a major disadvantage of this technique
remains the lack of ability to discriminate between the
different classes of particles present in a test solution.

This functionality is needed especially for particle
monitoring and characterization in drug products filled in
syringes. Pre-filled syringes are the preferred primary
packaging format for liquid therapeutic proteins due to
the convenience of administration. However, syringes
usually have a thin layer of silicone oil applied to the inner
surface of their barrel as lubricant in order to ensure
smooth gliding of the plunger. A certain amount of silicone
oil always partitions into the aqueous drug solution forming
small, sub-visible oil droplets. Although silicone oil is inert
and considered harmless to humans, these microscopic
silicone o1l droplets are indistinguishable from the poten-
tially harmful proteinaceous particles by conventional light
obscuration measurements. This puts forward the need to
develop techniques that allow the differentiation of silicone
oil droplets from proteinaceous particles.

Flow microscopy techniques are gaining an increasing
popularity for particle analysis owing to their ability to capture
digital images of the particles present in solution. Computer
analysis of these particle images does not only allow accurate
counting, but also classification of the particles based on their
morphology (4,5). Currently, there are several flow micros-
copy instruments available on the market representing
different technical implementations of essentially the same
principle. For this study, Microflow Imaging or MIFI
(Brightwell Technologies, Ottawa, Canada) was used as it
offers a good compromise between counting accuracy and
image quality. Briefly, in MFI bright-field images are
captured in successive frames by a high-speed camera as a
continuous sample stream passes through a flow cell
positioned in the field of view of a microscopic system. This
setup allows counting of all particles present in the solution in
the size-range from 2 pm to 400 pm. The digital images of
all particles may be examined to further classify the particles
based on their morphology and level or translucency.
Silicone oil droplets for example, have a very characteristic
appearance in the MFI images due to their perfectly
spherical shape and the particular way they refract light
(6,7). Interestingly, while there are routines available for the
MTT instrument software to process the image morphology
data, a fast and reliable software filter for automatic
classification of o1l versus non-oil particles 1s still lacking. Here
we present a novel approach to the development of such
software filter, based on a combination of four image

parameters that serves as a reliable basis for discrimination
between silicone oil droplets and proteinaceous particles.
The utility of such procedures was confirmed using test
sets of protein and silicone oil particles larger than
2 pm.

MATERIALS AND METHODS
Materials

The MFI DPA4100 series A (Brightwell Technologies,
Inc., Canada) equipped with a 470 nm LED light source
was used to detect and measure particles. Phosphate
buffer saline (Dulbecco’s, pH 6.5) was purchased from
Invitrogen™, 0.22 pm disposable MILLEX®GP filter
units from Millipore (Carrigtwohill, Ireland) and NIST
traceable standards were obtained from Duke Scientific
(Fremont, CA). HELLMANEX®II protein cleaning solu-
tion was purchased from Hellma® Analytics (Germany),
filtered pipette tips from Mettler-Toledo International
Inc., small volume tubes from Nalgene® Cryoware™,
large volume tubes (Cellstar® Tubes) from Greiner bio-
one, silicone oil from Hach-Lange (Germany) and
trifluoroacetic acid from PIERCE. A thermo mixer
“Comfort” from Eppendorf was used in the heating
studies and a “Clima Temperatur System” from CTS
(Germany) for the freeze/thaw trials. Two antibodies
(Novartis development products)—IgG-A (showing rela-
tively low aggregation propensity) and IgG-B (showing
relatively high aggregation propensity) were used as
model proteins.

Preparation of Aggregates
Using pH Stress

5 mL aliquot of 150 mg/mL protein solution was
transferred into a tube with a volume at least twice of the
sample volume for proper mixing. While vortexing the
solution 25 pl of trifluoroacetic acid (TFA) were added to
reach a final TFA concentration of 0.5% (v/v). After
vortexing the sample for further 30 s, the TFA spiked
sample was shaken for 30 min in a horizontal position at
room temperature and 300 rpm. 1 mL of this sample was
measured.

Using Heat/Shaking Stress
1 mL of filtered, undiluted antibody solution (150 mg/mL)
was transferred into a tube. The samples were stressed for

10 min at 60°C and 1,400 rpm and stored on dry ice until
the measurement.
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Using Freeze/Thaw Stress

4.5 mL of unstressed and diluted protein solution (2 mg/mL in
PBS) were filtered through a 0.22 pum filter and transferred
into a 5 mL tube. Using a software program the sample
was frozen and thawed automatically. Ten freeze/thaw
cycles were performed. The samples were equilibrated to
4°C for 20 min before and after each cycle. One cycle was
defined as following: temperature decrease from 4°C
to —40°C within 30 min, holding time at —40°C for
25 min, temperature increase from —40°C to 30°C
within 35 min, followed by a holding time of 25 min at
30°C and finally, a temperature decrease from 30°C to
5°C within 5 min.

Preparation of Silicone Oil Spiked Samples

To prepare a “silicone oil only” sample, a 5 mL aliquot of
unstressed and undiluted antibody solution (150 mg/mlL)
was filtered through a 0.22 pm filter. 20 mg silicone oil
were added using a pipette. To ensure good homogenization,
this sample was shaken for 3 h in a horizontal position at room
temperature and 300 rpm. To prepare stressed protein
sample spiked with silicon oil 4 mL of aggregated material
(see above) was spiked with 20 mg of silicone oil. To ensure
good homogenization, the spiked sample was agitated as
described above.

Microflow Imaging Measurements

The system was flushed with 15 mL of HELLMANEX II
(2%) solution and with 15 mL of water. For these flushing
steps a silanized glass syringe (15 mL) was used. The flow
rate was set to maximum speed. This flushing step was
repeated after each different sample.

I mL of all samples was filtered and degassed (>30 min,
20 mbar) prior to ecach measurement and were used to
perform the “optimization of illumination” routine. Using a
portion of the sample, which is filtered directly prior use, in
order to perform “optimization of illumination” is essential
for high image quality and results in low misclassification
errors of the filter.

The samples were gently mixed and degassed
(>30 min, 20 mbar). 1 mL of each sample was measured.
A maximum number of images was collected during each
measurement.

Calculation of S-Factors and Assessment of Errors
in Particle Identification

The S-factor for each individual particle was determined by

calculating the multiplication product of the values of these
four optical parameters for oil and protein particles
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separately: Circularity, Aspect Ratio, Object Intensity
STD, Object Intensity MAX. These S-factors were sorted
by size (ECD) and their average values, as well as their
standard deviation in each individual size bin were
calculated. The averages were used to determine and
calculate the S-factor Cut-Off function:

Cut Qﬁjie@‘iﬂ size — Ayg . [Oilxjieﬂy‘i[ .rize]

Avg . [Odvjymﬁz .vi,ze] - AUg . [P rowz.n.r/)eci e .rice]
2

Based on these cut-off values, the errors (per size bin)
were calculated by counting all oil particles below the cut-
off and all protein particles above the cut-off. The total
numbers of incorrectly classified particles (for both protein
and oil) were then related to the total number of detected
oil particles:

€107 ojl specific size — 100

B # of counts within avg.s— fuciors, specific size, oit = ST Dy
Total # of counts,y

The calculation of the protein specific errors is equivalent:

10T protein, size bin — 100

B # of counts within avg.s— s, specific size, protein = ST Dpprotein
Total # of countsyypei,

The cut-off values were then optimized manually for
each size range in order to obtain errors below 5%. Further,
using non-linear regression function fitting the final cut-off
parameters were defined as follows: 2.13 pm—4.38 pum
(S-factor = 36375%In(x)-23108 (R*=1)); 4.63 pm-10.88 pm
(S-factor = 38767#n(x)-27428 (R*=1)); 11.13 pm—400 pm
(S-factor = 72000 (R*=1).

After the calculation of the S-factor for each individual
particle, classification in two categories (“0i/” and “non-0il”)
was performed by sorting these particles according to the
calculated cut-off values (S-factor higher than the cut-
off—"0il,” S-factor lower than the cut-off—“non-oil”).

Finally, the percentages of oil and protein were
calculated by counting all particles classified as “oil” or
“protein,” respectively (per specific size bin).

Defintions of MFI image parameters are presented in
Table I.

RESULTS AND DISCUSSION

In order to assess the prospect of developing a software
filter for discrimination between silicone oil droplets and
proteinaceous particles, samples containing only silicone oil
droplets (suspended in filtered protein solution) and
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Table 1 Definitions of MFl Image Parameters

Parameter Definition

Aspect ratio A value between zero and one (unit-less) that represents the ratio of theminor axis length over the major axis length
of an ellipse that has the same second- moments as the particle.

Circularity A value between zero and one (unit-less) that represents the ratio of the circumference of an equivalent area circle

over the measured perimeter.

Equivalent circular diameter (ECD)
area as the particle.

Intensity MAX
Intensity STD

It is expressed in microns and represents the diameter of a sphere that occupies the same two-dimensional surface

The maximum illumination intensity (brightest pixels) of a particle expressed in 1,023 levels of intensity.

The standard deviation of the illumination intensity levels in a particle. In the case of MFI, a 10 bit sensor is used

which provides 1,023 levels of intensity resolution.

artificially stressed protein samples containing only protein
particles, respectively, were prepared (see Materials and
Methods). These samples were analyzed by MFI. Upon
close examination of the MFI images it becomes evident
that silicone oil droplets and proteinaceous particles appear
sufficiently different to the human eye even at sizes close to
the lower size limit of the instrument (sizes as low as
2.13 pm) (see Fig. 1).
conclusion that a reliable discrimination of particles larger

This observation leads to the

than 2 um in two categories (oil and protein) based on their
image parameters should be possible.

Indeed, in a recent publication such an approach using
the image parameter aspect ratio (AR) was proposed and

reported to result in misclassification of about 5% for
particles larger than 5 pm (7). In our hands, when applying
this filter to a number of proteins and stress conditions the
reported performance of the filter could not be confirmed.
In some cases, the misclassification errors were larger than
40%. In addition, these errors increased significantly at
lower sizes as protein particles, similarly to silicone oil
droplets, have aspect ratio close to 1.0, as previously
pointed out by Oma and colleagues (7). As a consequence
of the latter observation, the proposed AR filter would only
be partially applicable to protein biopharmaceuticals,
where the vast majority of the particles are smaller than
5 pm due to the exponential decay distribution of particle

Fig. I A collage of representative silicone oil droplets (a) and IgG-A protein particles (b) of sizes: 2.13 um (first row from top a and b), 3.13 um (second
row from top a and b), 4.13 um (third row from top a and b), and 5. 13 um (fourth row from top a and b). Ten randomly selected particles of each size
class are shown. Solution of IgG-A was filtered through a 0.22 um filter which was followed by addition of silicone oil (see Materials and Methods) (a).
Protein particles were generated by shaking a solution of IgG-A at 60°C for 10 min at 1,400 rpm in the absence of silicone oil (b). The area delimited in
red is shown in € zoomed; silicone oil droplets (left) and protein particles (right) show the differences in morphology of both classes of particles even in this

small size—3.13 um.
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numbers with size (the smaller the size—the larger the
number of particles present in solution) (8,9).

Upon a systematic review of all nine individual image
parameters and the distribution of their values in samples
containing either oil droplets only or protein particles only (see
Materials and Methods) one finds a very significant overlap
between these values for protein aggregates and silicone oil
droplets in the size range between 2 pm and 15 pm.

The most discriminating image parameter is aspect ratio
(see Fig. 2). However, the distributions of the values
observed for protein aggregates and for silicone oil droplets
reveal a high risk of wrong classification.

Despite the well-separated average values, the large
spread of the individual values (reflected by the error bars)
prohibits an accurate differentiation between these two
particle classes, especially for sizes smaller than 5 pm,
where the errors (misclassification) range up to 50% (see
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Fig. 3). Furthermore, the morphology of proteinaceous
particles strongly varies depending on the stress condition
used to generate them (see Fig. 4). Most importantly, the
particles formed using stress conditions relevant to the real
storage conditions for biopharmaceuticals (heat, shaking,
freeze/thawing) have the highest aspect ratio and are
therefore the most difficult to distinguish from silicone oil
droplets when only this parameter is used.

An alternative approach to address this problem would be
to apply multivariate statistical analyses in order to assess how
a given Image parameter varies with relation to other image
parameters and size. In this article, we present a third,
multiparametric approach using a custom function derived
from several MFI image parameters that we selected (aspect
ratio, circularity, maximum object intensity and standard
deviation of object intensity—for exact definitions see Materials
and Methods).
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Fig. 2 Graphical representation of the size distribution of the image parameter aspect ratio (a—IgG-A and b—IgG-B) and S-actor (c—IgG A and d—IgG-B)
for protein particles and oil droplets obtained using MFI (see Materials and Methods)—average values per size bin with 0.25 um step ranging from 2.13 um to
['1.13 um, including the standard deviations (error bars). Brown circles—oil droplets, orange circles—pH stressed protein, light green triangles—heat/shaking
stressed protein, dark green triangles—freeze-thaw stressed protein.
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Fig. 3 Misclassification errors of the image analysis filtters measured using experimental test sets: (a) silicone oil droplets in filtered IgG-A solution, classified
as “non-oil” by the filter; (b) silicone oil droplets in filtered IgG-B solution, classified as “non-oil” by the filter; (c) IgG-A particles produced by heat/shaking
stress, classified as “oil” by the filer; (d) IgG-B particles produced by heat/shaking stress; (e) IgG-A particles produced by pH stress, classified as “oil”; (f)
1gG-B particles produced by freeze-thawing stress, classified as “oil”. For experimental details, see Materials and Methods. In all plots the results from the
application of aspect ratio >0.85 filter are shown in orange circles, basic S-filter—in brown circles and protein specific filter—in light green triangles. Tabulated

data may be found in Table S| from Supplementary Material.

Firstly, several parameters which differ significantly for
protein aggregates and silicone oil droplets across the size
range from 2 um to 400 pum were identified. As noted
above, none of these parameters could provide adequate
discrimination between oil and protein on their own. More
specifically, while the average values for protein and oil

particles were significantly different, the individual values
for large number of the particles varied extensively, thus
resulting in a considerable overlap. We rationalized that a
function, which is a product of the values of several
parameters (ecach showing relatively small value differences
between oil and protein particles), must result in sufficiently
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Fig. 4 Representative screenshots of MFI analysis of (a) silicone oil in filttered IgG-B solution, (b) particles of IgG-B subjected to heat/shaking stress, (c)
particles of IgG-B subjected to pH stress, (d) particles of IgG-B subjected to freeze/thawing stress (for experimental details, please, see Materials and

Methods). Scale bar corresponds to 200 um.

large spread and thus provide a more reliable basis for
distinction, i.e. while the differences (signal) would be
multiplied; the variability (noise) would not.

The parameters selected were aspect ratio, circularity,
maximum object intensity and standard deviation of object
intensity. This choice was based on the appearance of the
silicone o1l and proteinaceous particles. As seen in Iig. 4
silicone oil particles are perfectly round (due to their
hydrophobicity) and therefore have very high values for
circularity and aspect ratio. On the other hand, protein
particles even at the lower size ranges are irregular and
therefore the values for these parameters for protein would
always be lower. In addition, while silicone oil particles
appear very dark in the smallest sizes, a characteristic bright
spot appears in the middle as they become larger resulting
in an increasingly higher maximum object intensity. Larger
silicone oil droplets always maintain this characteristic
appearance in water, buffers and even in the presence of
proteins (for examples see Supplementary Material). The
presence of very dark and very bright pixels in the images
of silicone oil droplets contributes to their significantly

@ Springer

larger values of standard deviation of the object intensity.
Based on these observations one expects that multiplying
the image parameters together with their differences in
values would allow better separation of the populations of
oil droplets and protein particles. Consequently, they might
be used as a software filter to discriminate between these
two populations in samples containing both types of
particles. According to this assessment, a custom function
(S-factor) was defined as the product of multiplication of the
values of the parameters aspect ratio, circularity, maximum
object intensity and standard deviation of object intensity
(see Materials and Methods).

In order to assess the performance of the software filters
described here, experimental test sets were created using
either stressed protein solutions not containing any silicone oil
(“protein only”) or stressed protein solutions which were
filtered using 0.22 pm filter in order to remove all sub-visible
particles and to which subsequently silicone oil was added
(“silicone oil only”). These samples were analyzed using MFI
DPA4100 (see Materials and Methods) and the images were
subsequently evaluated. The S-factor filter and the aspect
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ratio (AR) filter were applied on the same datasets to classify
all particles in the samples as either “non-oil particles” or “oil
droplets.” The errors given by the software filters were
defined as follows: Firy,, was defined as the fraction of all
particles in the protein only sample classified by the software
filter as “silicone oil droplets” and Err,;—the fraction of the
particles in the oil only sample classified as “non-silicone oil
particles.”

The distribution of the S-factor for the two different
proteins used in this study as well as the variation of the aspect
ratio for the same (both per MFI size bin) are depicted in Fig. 2
using the average values per MFI size bin as well as their
relative standard deviations. Upon comparison of the two
variables it becomes evident that much larger spread between
the values of the S-factors of the smallest sizes (<10 pm) is
observed as compared to the one between the values of
aspect ratio. This spread allows for defining a cut-off function
(see Fig. 2) in order to classify each particle as either “non-oil”
or “oil” according to the value of its S-factor. Further,
comparison between the errors of the two filters (see Fig. 3)
reveals that the S-factor filter in all cases results in smaller
Erry,,—in most cases at least twice as small and in some cases
33 times smaller than the previously proposed AR filter.
Interestingly, these differences vary, depending on: a)
individual proteins and b) type of stress applied to generate
aggregates. These observations are rationalized after exami-
nation of the images of protein particles generated by
different types of stress. For example, particles generated by
pH stress are much more dissimilar from silicone oil droplets
as compared to particles made by heat/shaking or freeze-
thawing (see Figs. 2 and 4).

After analyzing a number of data sets obtained for
different proteins from the Novartis pipeline as well as
different stress conditions, a cut-off function was defined for
a basic silicone oil filter (see Materials and Methods).
However, as the particle morphology varies slightly from
protein to protein (for particles formed under identical
stress conditions), the filters may be further optimized for
individual proteins by tuning the cut-off function to further
reduce the misclassification errors (see the examples in
Fig. 3).

Using the approach outlined above it is possible to create a
large number of custom image analysis filters based on
different combinations of nine image parameters that MFI
offers. For example, if three out of nine image parameters are
used there are 84 possible combinations; if four out of nine
image parameters are used there are 126 combinations
possible, and so on to give a total of 511 combinations. In
order to validate the software filter proposed here, all possible
combinations of the nine image parameters were assessed.
Firstly, S-factors were calculated for both protein particles and
silicone oil droplets for all size-bins from 2.13 pm to 400 pm in
0.25 pm steps for a test set. Secondly, a cut-off function was

defined in each case, taking the median of the difference
between the average S-factors for protein particles and silicon
oil droplets in each size-bin. Finally, the errors (overlap) in
these S-factors for both particle types (protein particles
classified as oil or oil droplets classified as protein particles)
in the corresponding size bin were determined.

Using this systematic approach all theoretically possible
software filters based on combinations of particle image
parameters were compared. This assessment established
that indeed the combination proposed initially (z.e. aspect
ratio, circularity, maximum object intensity and standard
deviation of object intensity) provides the best possible
discrimination (lowest misclassification errors) for protein
and silicone oil particles.

Yet surprisingly, several other parameter combinations
were found to result in very good discrimination between
protein particles and silicone oil droplets. This finding is
particularly encouraging in terms of future development of
software filters for flow microscopy, as the values of the
different image parameters may vary significantly from
protein to protein (depending on the shape of the particles
formed under stress). Although the latter is contrary to our
own experience, having multiple options for filter develop-
ment in the future (utilizing different combinations of
image parameters) gives researchers the opportunity to
apply this approach to their specific products and
problems. Regardless of variations in the image filters
that we may see in the future, the fundamental principle
of using several parameters in order to multiply the
“signal” and cancel out the “noise” that we propose here
is likely to remain widely applicable in particle image
analysis the future. Furthermore, the filter proposed here
provides the opportunity to compare datasets generated
in different laboratories and standardize this type of
analysis.

Light obscuration has a lower size limit of detection of
approximately 1-2 um, which is imposed by the limit of
sensitivity of the photodiode of the detector. In contrast,
flow microscopy is capable of counting and imaging even
smaller particles. For an optical system with a numerical
aperture of the objective close to 1.0, high magnification
and a high resolution camera the theoretical optical
resolution would be approximately the wavelength, which
in MFI is 470 nm, divided by 2. However, the depth of field
of such a system would be far too small to be of practical
use when trying to image particles in a flow cell on the
order of hundreds of microns in depth. Operating at a
lower numerical aperture and magnification offers a trade-
off between the lower size limit and the practical measure-
ment range of the system. For the DPA 4100 MFI system
used in this work, this results in an operating range to
measure particles between 2 and 400 pm. We expect that
in the future, if such highly sensitive hardware setup
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becomes available, it may be possible to discriminate
between silicone oil droplets and proteinaceous particles
smaller than 1 pm by using the image morphology analysis
approach that we offer here.

It probably is worth mentioning, that the distribution of
the intensity image parameters (e.g. Object Intensity MAX,
Object Intensity STD) may differ in future hardware
versions of MFI in case a different wavelength of illumina-
tion is implemented. Since both light absorption and
refractive indices are wavelength-dependent, the level of
opaqueness of the particles may vary slightly (for examples
see Supplementary Material), which in such modified
instrument versions would need to be assessed.

Finally, the approach applied here was an empirical one.
While it has resulted in the development of filters with
excellent accuracy, it is likely that in the future multivariate
statistical analysis would find wider use. The implementa-
tion of such statistical tools in the software package of
instruments would be very beneficial to the broad
application of flow microscopy to the sub-visible particle
analysis in the biopharmaceutical industry.

CONCLUSION

In conclusion, we have demonstrated the successful devel-
opment and use of a novel, custom made software filter for
discrimination between proteinaceous particles and silicone
oil droplets in flow-microscopy imaging analysis. The new
filter 1s based on a multiparametric approach and uses four
MFT image morphology parameters simultaneously. This
novel methodology was evaluated using in parallel exper-
imental test sets of different proteins, generated using
several different types of physical stress, as well as silicone
oil suspensions. The results presented here demonstrate that
the novel software filter allows reliable classification of
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silicone oil and proteinaceous particles as small as 2 pm
with relatively low errors.
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